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TU stability of two dimensional small disturbances la incom- 

pressible Laminar boundary layer flow baa MM extensively studied by m*«y 

authors on the assumption that boundary layer flow» ere essentially 

lei flow«, (references* 1, 2, 3> k> and 5). Their results agree fairly 

veil with the available experimental data, (reference 6). In references 

7 and 8, the stability investigation is extended to the laminar boundary 

layer in a compressible fluid. The direct effect of the local pressure 

gradient on the calculation of the stability limits for incompressible 

boundary layer flow has been shown in reference 9 to be negligible under 

the approximation ~ « 1 , if the local velocity profile is used in the 

stability calculation. It has also been pointed out in reference 8 that 

the effect of the local pressure gradient in the compressible case can be 

expected to behave likewise. However, the assumption that the vertical 

velocity component in the boundary layer flow plays negligible role has not 

received careful attention. 

It is questioned in reference 1Q whether the boundary layer flow 

can be cflmsidered as a parallel flow and whether the gradients in the main 

stream direction have negligible effects in the investigation of the stabil- 

ity of the small disturbances in the IwmlTwr boundary layer* There Is a 

qualitative argvs&öät that under the Prandtl boundary layer approximation; 

the variation of the mean flow properties in the x«?direction, within a few 

wave lengths of the disturbance is of the order of •—-   , which is negligibly 

small compared to unity. Therefore the contributions of such terms in the 

stability calculation can be neglected as higher oräer mail quantities. 
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This kind of argument should be investigated more «lately so far as the 

vertical velocity component i» concerned even though tile vertical 

component is a mail quantity of the order of 4r  .. She vertical iraioeity 

component produces a momentum transfer ana aa energy transfer across the 

boundary layer where, both the disturbance quantities and the mean flcv 

properties vary rapidly* The net effect of the transport processes nay 

thus be auch larger than the magnitude of the snail agent that produces the 

transport processes. Although the vertical velocity component of the flow 

and the gradients of th© flow properties in the x-directipn are -small quan- 

tities of the seme order the net effect of the former in the stability cal- 

culation Kay be much more important than that of the latter. The present 

analysis verified this argument. It is shown that the vertical velocity 

component is the most critical factor that is neglected in previous analysis 

of the stability of the laminar boundary layer flew. 

Because of the ingenious selection of the solutions of the dis- 

turbance amplitude functions made by the previous investigators, the ver- 

tical velocity component does not enter into the stability calculation in 

first approximation* In all these schemes the stability of the two dimen- 

sional small disturbances in laminar boundary layer flow is determined only 

by the local flow properties in first approximation, for higher a* 

ations! or for higher Mach numbers of the flow where the effect of vertical 

velocity is no longer small this statement is not correct. 

^ä;iiöÄ^>ü^L% *;*"^£^^%_ .r^'3^-^ 
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XX* Qe&erel Formulation 

of differential equations for the 

tions is obtained from 

(1) Equation of asms continuity 

(2) Two equations of mos*ntum, i.e., H&vier Stokes equation 

in two dimensional form. 

(3) Equation of energy balance 

(4) Equation of «täte öf an ideal gas 

We shall take into account the -variation of , viscosity and thernal conduc- 

tivity coefficients but neglect the variations of the specific heats with 

temperature in the boundary layer. Symbols are mostly adopted from ref- 

erence 7 to facilitate comparison. Superscript (*) is used to indicate 
&   . . . • 

physical quantities and subscript (o) is used to denote free stream values 

of the quantities. Subscript (c) denotes that the quantity is evaluated 

at the critical layer where w • c. 

Curvilinear coordinates are taken with x as the length along the 

wall and y normal to the wall, nondimeasionelised by the thickness    of 

the boundary layer. The dimeneiohiess parameters are defined as 

1. Beynold« Sumber t* n* S*s *• 

2, Mach Rumber 

Be 

M ** /4ift*rt 

3. Prandtl »umber      <* *. 4H*/K* 

ki   Froude Sumber is assumed to be infinitely large so that the 

effect of the acceleration due gravity is neglected. 

i>% 
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The basic equations for the stability investigation in dimension- 

3^«.*oa£«c«^--~----•'•--    -•- •--  -- - -..-'__. 

continuity*       ft* ^Jx f ^W *o 

lilt momentum 

2nd momentum: 

Energy 

(2) 

(3) 

.VfeC'lhT^+(HiT,U 

(5) 

S^iSs^i 

State   I» s fj 

Here subscript x or y means partial differentiation vith respect to x or y» 

f <      is the first viscosity coefficient and  pr  is the second 

or the bulk modulus of viscosity; and f^z.  will be zero if the Stokes* re- 

lation is valid. With the assumption that p     and BL*" are functions of 

temperature only and that both Cb and cr  are constant; ve knov that p 

and k in dlmensionless form are identical. Mius in the energy equation 

k is replaced by u   and both the variations of k  and w     are given 
c(u, 

by the variations of temperature multiplied by -gir 

In equations (1) to (5) replace each of the oscillating quantities 

by the sum of the time independent mean quantity and a smaH, oscillation 



\— i. .-   *I -    .  :. ._ : ;  •' r    ' —"' 

:~,^;"-'**-^; 
?%£Z"vr,.-.. ..»i.V. 

W-y,*-.^.---^;- 

.lift «fJ'tti. «uaatity»   *•* aoairaaiaa«« ia writing, üb« MU quantity im 

by ttiHM lattar.   Par araapl», w» writ« for   3<*»3»•'*> 

ta» »ist o£    -f c *# it ^i <*> a v e 

With dt *wa*» auabar of th» ©sciilatic» 

Z-m Zu ( X-*^ 

.X^TT 

W»T» 

«ad. © •   c^-v et*     aal both c^cmoi c^ ar* raal.   tti aagfctud« fiawtioa» 

r(x.y) 1* tiä» ladapaadant.    CA »taada for tat waloaity of tat waw» M 

obsarrad by pa obaarvar oa tha wall, and      c^    is ralatad to tha amplification 

tactor so that C^ ^ o  dataraina« whvfchar tha disturbaaea ia aaplif lad, 

neutral ofuM^i. 

Aa tha aaplitudas of tha aaall parturbatioa quantities ara aesuRed 

aaall > wo aaall aeglact all the taraa containing tha product or »quare ef 

thase aaall parturbatioa aaplitude» • Rioaa taraa containing only taa aaaa 

flow quantities satisfy taa systea of aquation» (1) to (5) by thea»elT»a and 

therefore drop out of tha disturbance aquations. He than obtain tha following 

linearised ayataa of differential aquatioaa for tha parturbatioa amplitude 

function». 

Continuity; 

•vT A' 

Xä-A> 

(6) 

fIrat Moaantuat 

3'       J      • 

^: 

(7) 

«»5 **fx>  ^-.'Aiii*^'' 
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s* 

Inergy: 

; Jon r 0% ©«+ x*Vöx-^e) 
0" Ri> L 

v] 

(8) 

(9) 

Sijat-s? 
(10) 
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In all these equetl«nc the prime is UNA to ladleete differentiation with ." 

' respect - to- -ir*A subscript * indicates differentiation with rospsttto *. __ 

T «emotes the ratio of 4jg/4j£   , variations of the vis*>sity eo*f- 

flelentshave boon replaced *r the corresponding variations In temperature. 

These disturbance equation« {£} to (9) ***• partial differential 

equations with two Independent spatial variables x and y» The time coor- 

dinate hat boon separated by investigating the stability of the periodic 

solutions of ths ospcsÄiitial type exp£* oi C>-ct )J. *£ne variation of the 

disturbance has been separated into two parts, a fast varying part depend- 

ing on the frequency of the disturbance and a slowly varying part depending 

on the decay or the growth of the amplitude of the oscillation. It is the 

slowly varying part that enters equations (6) to (10). In viev of the fast 

that the length in the x direction is rmry auch larger than the correspond* 

lng length la the y direction for the saac order of magnitude of the change 

of these amplitude functions, we nay consider all those x gradients as in- 

dependent of x in the first approximation. In other words we can consider 

satiations (6) to (9) as a set of ordinary differential equations with y a* 

the only Independent variable. Thus we have four linear homogeneous ordin- 

ary differential equations and an algebraic equation of state for the five 

variables •$. <f, -»r. A % e .   She analytic nature of these equations is almost 

the fane as that of reference 7 where the vertical velocity component and 

the gradients In the x direction are neglected. She only equation that has 

been slightly modified is the continuity equation where h.'    is brought into 

the equation by the vertical velocity component so that the continuity equa- 

tion becöffies a first ordsr ordinary differential eqtsation of both   & 

and K     instead of  <P  alone,      üfce equation of 

:• - • - • - -%;. .. --•-„ •-* %%jg 
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can be used to elljsinate r ana 

r'*T"-'T    TT    T ^T-   f* 

I*f ine the following quantities: 

*, » T 
•$;- 

Then "by definition ve have 

*7 M* *6 ~ 

2 *s <? 
/ 

y *z 

—T-,—• —     A:/, 
d1 

2. 

aja *s 
With, equations. (11) and (12) equation of continuity (9) becomes: 

The first fiäaentum equation becomes: 

+    ^(^^^^«r'j^^-X-^^Ss. £ 
H yp, '7X 

(12* 

(13) 

|2# 

_•/-, ITI- - li'Vi'itiriiii—•—• 
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Substituting the expression for Xv+*£. frcm equation (OA.) 

into the energy equation (9) we obtain. 

H * s,,*^Drf 1^^-° **+^•- n**{\%+ i(^c^*7ij 

(16) 

aJU 
4T 

• (V^ «-*V*6-»- *TX(*?X+**£*> + T** 2*1 

•MMnKtriaWMMM 
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Iquetion* (13) and (1?) art th« »igfet <M^&tl«mi for the Aatermina- 

tioa of the eight ualawwn quantities  2; with <*>(.*• , . 8. The contin- 

uity equation (Ik) is algebraic and linear. 

17. Approximate Solution« and the Boundary value Problem. 

It is almost impossible to find the exact solutions of the system 

of equations (13) to (17)» Approximate solutions can however be obtained 

based upon the fact that -^     is a very small quantity in the boundary layer 

flow. According to the Praadtl boundary layer approximations, whenever this 

approximation applies, the order of magnitude of the dimensionless quanti- 

ties of mean flow properties are; 

-<*> » o(0        JB-S   OL\) ,        P = OC 1j 

--fa OH) "^ 

^ «^ r -A- v 
"1 'S - oCnfeJ 

-§3 (velocity) 1=. 0(«3 

,0  
7>CX/u> Re. ^5 

^r 
7 /b t> (18) 

where j*- is the differentiation operator along the x-direction, and does 

, not change the order of magnitude of the quantity on which the operation is 

performed. 

' The methods of solving the disturbance equations for the com- 

pressible problem and those for the incompressible problem are essentially 

the same. These methods utilize different forms of the series expansion in 

terms of some convenient parameter related to (d^) r\ 
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rl 
1. The seriesexpansion of the solutions ^ in t«ni of Wg«y li 

the «opt obvious one. Da the ftrat approximation; the system of distur- 

bance equations (13) to (17) can "be reduced to a second order ordinary 

differential equation with a singular point at «j ^*Jc where t^ftjj « C ,. 

This equation: 

*j.r      L~ 
or c <*r~c y 

?a* T    1 "" (#> 

Is identical vith the inviscid equation as given in reference 7. Therefore 

two independent solutions can be obtained from this asynptotic expansion* 

The higher order approximations can he obtained by Successive quadrature«.. 

"$. Transform the dependent variables %i    hy 

(20) 

vhere  g is a function independent of oiR*, and j-^ is expanded into 

power series of (<*Ra.) .   . Four  independent asymptotic solutions, other 

than the two obtained from equation (19) are obtained. The initial approx- 

imations are identical with those given in reference 7* 

%* ii  ^[WReT1^^ ] 

3. Expand the variables %x in terms of the powers of 
3 
« £ 

and t**tt*fprm--the- independent variable from y to t[ » - ^ ' where•iC(^y»c. 

Six sets of independent solutions can he obtained. The initial approxima- 

tions are identical with those given in reference f.   This series solution 
c 

is considered as convergent and is recognized as being able to give any de- 

gree of accuracy if sufficient number of terms are taken in this g. series. 

As is well known, the proper selection of the approximate solutions 

to ha used in the boundary value problem in the incompressible case has "been 

•. „-fr*.. „•-•;•.,'•„•' "£' 
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ouUuitd. . 

taten txm the eoaverfsnt t. 

2. Ail sots «f solutions taten trim the eaymptetio series. 

3. Seiest the proper asynptotie series solution« to replace the w» 

responding solutions obtainedtns £  series.. Tor example, the two iariseid 

solutions obtained from equation (19) can bo uood to replace X4-3  and 1^4  > 

that is, tho third and tho fourth sets of the £ series solutions. 

Ve shall investigate tho effect of tho vortical velocity vOBpoa= 

out and the «radiants ia tho x-directioh on tho solutions of the disturbance 

equations (13) to (17) uoing the £.  series. 
- «4 . . H •* M* Dof iao the parameters      6 « CdRO    ?    and    tt =   :_3 " J'V. te-Ü 

v    c 

where 4^(j«j *••€ . Since e is ia general co-pi^s, ye is also a coetplax quantity. 

Ixpand all the mean flow quantities in Taylor series about tho 

critical point y0 thus** 

<*'L JH 

4*-c * -uTe   (€.i|)   + ?££ (Elf*"-*- ^ <£yA- 

y-   Jei-y'la^-* •J^'-ce^1 

and 

.»f 

:V\ tV«.- — 

(23) 

<•* tf£' J> •*y> dU 

*otts[^.*.i»rcEt()+ #uipf«----1 

woere °°"   TcV    -»5     3«- 

>»i-  s,-l    -a^ 

jjg^fc Jfc 

S< 

3>. 5 «1 

(25) 

^= 

*As pointed out recently by C* C. Lin (reference 18) Taylor series expansions 
for the mean flow quantities about the critical point are not very suitable 
for high Mach number flows, (M > 2, 3); or, one might add, for any flow across 
which there are large variations of vorticity or temperature. 

kJsUjisr: s*?~- - •"-'*•* 
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Hare .<, <ft  etc. are all quantities of the order of unity. If "to* flow 

is incompressible; the fluid density la constant and        . 

ATO 
>*& •'•*V o 

which ia »till of the order of unity» * 

As explained in the previous section the variation of the magni- 

tude of the disturbance has been separated into two parts; the fast vary» 

ing part due to the wave propagation and the slowly varying part of the 

amplitude of oscillation. It is the amplitude function that enters the 

disturbance equation. Therefore we can write 

~b_ 
-DY. "fce*?-* ~ 

ck £ 
3 J5- 
1>£ 

(26) 

vhen the operator z£f     vill not change the order of magnitude of the 

quantity on which the operator is applied for both the mean flow quantities 

and the disturbance amplitudes. With these facts in mdnd and also the 
it 

relation ^ * 1 —    ,. we can determine the order of magnitude of each 

term in equations (13) to (If.) if proper 8eriea expansions for %;.     in 

terms of 6 are defined and if c*   is of the order of unity. The: following. 

forms of the expansions of %± in terms of £ are found to be self-consistent* 

2*Ä 
f•- *.w   * 

U) 
£ X.,      * 

•*    GO 
£  X j   * "" 

s Ea = •f'- 
to) 

£X?   * *K?W- 

£' Z3 = e <J s *r+ *< - 

z* - x**'* fc X 4      •* €,   V4 +  

*8  • e - %?+ *x?»-~ 
£ Z6 * e'- • 0» 

t*y«..- 

e% - < + 
£X<'\ fc^  

Xs = 
01 

<27) 

'.' /.'. 
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By •ubatituting these MTIM (27) and expansion* (22) to (25) into 

v^j): t^(fy)lsa ^|titiÜiB co*f?±c3*gf» of ilfti&m power* o* •« oft bötfc •$d»iT 

öf each esi&tidn> ve- obtain a system of linear ordinary differential equation* 

fräst which successive Order äppxraimatiön* can be found by quadratures. 

Equation   (S3-)'- gives the following; simple relations 

S 
.«> 

(kl 

*-v-M' 

(kl 

*1 
t , 3 . 5    o^A 7 -     X*+1 

for the first and the K«-i* approximations respectively. 

The continuity equation .(lk)  gives 

First approximation of the order of 8; 

(c> <•! 
X4 * *• X, - s-O: or 

Second approximation of the order of £ 

-,— --    4-   A X,     » O 

*1 
(*•» _ ?< Co) 

4n 

Third approximation Of the order of £* 

-*<£; 
,*:"- 

+ i-l^$~ ^f}^.p^_ ^^ 
4 iC 

re X .fc. 

(28) 

(29) 

(3P) 

The vertical velocity component begins to appear in the continuity, aquation 

at the tbird approximation of the order of Z%.   The next higher approxima- 

tion of the order of £3 will bring in terms involving the gradients in the 

x-direction. 
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C*- 

The flret'momentum equation gives 

^•-^cTSI 

Second:4^^Mation öf' th* order of £ 

CO» 

«'I 

(33) 

Both the vertical, velocity component \T and the temperature sensitivity 

of the viscosity coefficient enter into the first momentum equation at the 

second approximation of the order of £. The next higher order approxima- 

tion E* will bring in term» involving the gradients in the x-direction. 

The second momentum equation (16) gives 

First approximatioa of the ordsr of £ 

Second approximation of the order of E 

C3H 

8 a-M - ° 

Third approximation of the order of €r 

iff- r4te+ipW^i^P^ T 

^U 1X 3 i (36) 

It is only in the fourth approximation of the order of £B that the terms 

involving the vertical velocity component will appear, and the gradients in 

the «»direction will coma in at the next higher approximation. 

ährMM^l'J-^ 
^^^----^.T. ,VM* 
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The energy equation 

firet i^roöciaatiön of the order of £c 

,10.). 

<imiiiiiiiiit"T   - 

ßecond approximation of the order of S 

,*W-J9-£}xH 

» ,(o} 

öfj -  -Vic"      v 

-  "TR; •^*^ • (38) 

The vertical velocity component entere the energy equation at the second 

approximation of the' order of €. The gradients in the x-direction yill 

appear in the next higher order approximation. 

For the first approximation of the order of £° we have the fol- 

lowing set of differential equations» 

\ 

r^. 

(29) 

(32) 

(3*) 

These equations are identical vith those given in reference 7. By elimin- 

Y 
<o> 

ating M from equations (29) and (32) one obtains a differential equation 

for 
An as follows: 

<*xS°' 
dl^; -vie ( <*»j 

= o 
(39) 
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whoto »olutioo» at» known in texiüi of the Henkel function» of the first 

* 
•3, 

and the «ieond kind of the order 1/3» Withargument  '2 « i c*i) * 

*£« ***** ^^ft^t 
The six sot» of independent solution» are obtained a»: 

A | v f»%i$«st*u**% 

\ 
Xji«. ^ *t$ ~ X»fc =s'<:) 

(to) 

and equation (29) gives after integration, 

*34 -    1 

*3»t   =   X3fe   =  O ^ 
.Co) 

y3$ - A,6 s= o 

Equation (37) can be used to solve for Y 

and equation (37) become» homogeneous and 

fi  . TOT  j- 5, 6,, 

i 
(*2) 

When Xyj with j * 1, 2> 3 and k can he obtained by quadrature. The 

formula for quadrature is 

For the second. aOTroximation, equations (30) > (33) > (35) and ($8) 

•will bo used«, The homogeneous parts of each of these equations is the same 

• * 

• wwn —. 
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u tlM oorresponding equation for; the first approximation. Sha inh<»oe«ti- 

Jüofigjji^^ «to. solution« of the previous ijjfr."" 

projections and the local velocity mid the local temperature prof ilesand 

so forth. Therefore the second approximations can be obtained from the 

first approximations by quadrature with a farmula analogous to equatioh(43j 
;<tv 

?or example, if we evaluate YxA.  , we differentiate equation (33) and use 

«AX 
<o 

equation (30) to aliainate' ^j^ *• We obtain the (differential equation 

for XtA- whose homogeneous part is the same as equation (39) s 
.3 «y 

dt]3   ^,t I d-f] 
dXti 

rdW* 

(44) 

In obtaining equation (44) the following values of the disturbance func- 

tions have been: introduced: 

to), CO) 
Ant ^4, = i 

W) 
and     yP/f.     is to be obtained from equation (43) withi = 4. 

w> 
Denote the right hand side of equation (44) by L,^ C*|.)  the 

following formula can be used to obtain X 
10 
14- 

(45) 

,v) 
The explicit form of )(,/>  must contain a logari«Bmic term when 

7^ is larg*. Qualitatively, when*T{ is large, the term "Xrk     eiVÄS ^S" 

dXi 
(»> T 

ligible contributions äs compared to T| —;---  and the solution of equation 

(44) will behave like the solution of 

di 

1 1 
- A 

(I) 

(46) 
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- Thus Xio. cuet oosfceln this 

The coefficient.of this logarithmic term j, ^Xx^        is-a" complicate 

known function of the local velocity profile, The local temperature pro- 

f ii* and ( -fefOc  > $8* do»fl ap* depend on the vertical velocity com*- 

poneht.   V3^  is obtained by integrating equation (1*5) • The logarith- 

mic term will appear in X^ as yh*<\   and win -vanish near the eat teal 

layer H-*» Mc or *!-><>-  . The inviscid solution <$t which is vised to 

replace this solution  X34 •*• £ X34   has been shown in reference f to 

approach zero as (j-^c> JUlJJ-iJe)   when y  approaches yCi The corr 

respondehce of these two solutions are thus made clear« 

The sane procedure can be used to find V:3s with j= 1, 2, 3, 5 

and 6« It is to be noticed that the vertical velocity component enters 

into these calculations only through the tern  ^"C
A^ '**j    *• Si**?® 

X%. = 2-Aij, - 0      for all values of j except J •• 1, and 2, it fol- 

^  - -  ......  ^10 v;w -•«»   .... «uj  ^_ „^._ 
lowtt. that all these functions X33 ,^3* xSy  and X3G  are inde« 

pendient of the vertical velocity component. But X&t and Yj* do de* 

pend on the vertical velocity component for both the compressible and the. 

incompressible boundary layer flow. 

The local gradients of pressure and temperature in the x-direction 

do not enter into the evaluation of these disturbance amplitude functions u = 

at the second approximation of the order of Z • The gradients in the x 

direction enter only when we go to the order of £.?-. Therefore the effect 

of the vertical velocity component is more critical than the effect of the 

gradients in the «-direction in the stability calculation. The effect of 

the vertical velocity component should be taken into account before the 

n A 

^ 

j 

lawMKBra»«1 iiiiwi >rii*'»Bii»wp>r ". .•' 
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effect of the local pressure gradient in the min «tree« could be coneiderprii., 

j •• -z~~       So fat» as the effect of the vertical velocity component on the 

determination of the stability boundary is concerned» the different »e|ee«- 

tians of the disturbance function« to be Used in the boundary value psPöbleÄ 

are of considerable importance. Suppose we take all X31 from the $  series 

andconsistently take all six solutions to the order of £ i.e* Xs^ + c*^j. 

in the boundary value problem, then one sees that the dependence of the söl» 

utions oil the vortical velocity coajponeat through X3) and Y3Z  vill not 

be consistent with the simplification of assuming the boundary layer flow 

as a parallel flow. 

Fortunately, all the previous investigators are satisfied with 
<Q) Co) 

the first approximation Of the tvo "viscous solutions"  X3»  and X^*, , 

while they used  A33 + 2.X33  and  X.34. -*• SX34    or the two 

equivalent invlscid solutions, or the inviscid solutions corrected for vis-*» 

coslty in the boundary value problem« Thus the stability boiädary as de- 

termined by any of these methods will be independent of the vertical velocity 

component and their results are consistent with the assumption that boundary 

layer flows are essentially parallel flows. But the accuracy of the quanti- 

tative determination of the stability boundary as carried out in references 

8 and Ik can not be Improved by taking more terms in the £ series without 

including the effect of the vertical velocity component. 

Unfortunately, in son» practical cases, the parameter £ is hot 

a very small quantity near the minimum critical Reynolds number based on 

boundary layer thickness. The Reynolds number may be only 1000 while pt ie; 

about unity. Thus £ is only l/lO. In such cases it may bo necessary for 

accurate quantitative determination of the stability limit and the amplifica- 

tion rates to go to the next approximation, in which case the effect of the 

vertical velocity component must be included» 

SfTttMmjraMimmmm' rnpiriiitrsimilimTi'""' ';'. 
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Xfr addition, et very hieb Mach »uäb«ri, the vortical 

component in the boundary layer is of the order of    y fte.s* 

(reference 13) wad «07 entor the stability problem of too laminar 

layer even la first approximation. This question requires ©areful Inves- 

tition before any statements can be made about too •tability of the hyper- 

sonic laminar bouodary layer* 

\\   v 

6 

*J 

IV, Conclusions 

1. The Vertical Telocity ccoponent is the most critical factor that 

is neglected in previous stability investigations of tho laminar 

boundary layer flov. It is justifiable to consider the boundary 

layer flov as parallel flov and neglect \T only vhen the viscous 

solutions X^ and \u **• taken to bo the first approximation of 

the order of £° in the £ series as is done by all the previous 

investigators. 

2. The local pressure gradient and the local temperature gradient in 

the x-dircetlon are less critical than the vertical velocity com- 

ponent in the determination of the stability boundary« These 

local gradients In the x-direction enter only to the order of £* 

or («*R*5. 

3. The stability of the laminar boundary layer is determined only by 

the local flov properties for both the compressible and the In» 

compr#«sible flov vithin the order of approximation attempted by 

previous investigators* In other vords the local pressure grad- 

ient and the local temperature gradient and the vertical velocity 

component of the boundary layer flov vill not affect- the ealoulation 

of the stability boundary in the first approximation, provided 

^ 
"< 
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that ää- ioeal rolocity prof lit and the local tesptrature 

art used in the stability calculation, 'Saese; lo*&l velocity aäd 

1,,^^ t^e»tur« profiles are of «our«« latuutOy «esascted fits 

the history of "the upstream pressure gradient eni the heat transfer 

conditions along the wall, Aa 1» pointed out in reference 9, this 

conclusion la of great practical importance for Ö» determination of th« 

beginning point of the instability of the laminar touadary layer flov 

o*er an airfoil, and also for the calculation of the rates of growth 

of the saall disturbance« downstream of the stability limit within the 

framework of the linearized small perturbation theory^ 
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